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The capture and evasion sets, the players’ optimal strategies and the game va- 
lue determined for the game problem on the dolichobrachistochrone, analysed 
within the framework of a position formalism similar to [l]. Singularities in- 

herent in the game of the minimax-maximin time to contact [l, 21 become 
apparent; they are determined in the given problem by the specific behavior 
of the optimal paths close to the target set. Isaacs [4] examined the gameprob- 
lem on the dolichobrachistochrone, being the game analog of the classical vari- 

ational problem on the brachistochrone [3]. However, as was shown in [5], the 

solution proposed by Isaacs contains erroneous statements. 

1. In the game problem on the dolichobrachistochrone a point m moves in the half- 

plane of z and Y (Y > 0) in accord with the equation 

Z’ = f/y Cos u + w (v + 1) / 2, y’ = J&j sin u + w (v - 1) / 2 (1.1) 

Here w is a positive constant and u and u are control parameters subject to the first and 

second players, respectively, and to the constraints 

o< u\< 2% -1,<v<l (1.2) 

The first player’s aim is the most rapid approach of point m the target set 

M = {p = {z, Y} 1 2 = 0, Y a 0) (1.3) 

being positive part of the ordinate axis. The second player tries to prevent point m from 
hitting onto set M or, at least, to delay it. In the problem statement we assume that point 

m is in the first quadrant at the initial instant. 
In [4] it is stated that for initial points x,, and Y, satisfying the conditions z’. > o and 

0 d YO < 12 the second player can prevent approach to the target set M in spite of any 
efforts of the first player. This statement is justified in [4] in the following manner : in 
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the region Y < w s the second player can move point m arbitrarily far from M by al- 
ternately applying the extreme vectors of his vectogram, i.e. by alternately using the 

extreme valuesofparameter v (see [4] , p. 90). A counterexample is constructed in [S] 
showing the error in the statement made. It turns out that points exist also in the region 

x > 0,O d Y < w’, from which the first player is able to effect approach to M despite any 
counteractions of the second player ; consequently, the straight line y = w* cannot be a 

barrier [4]. 

2, Let us pose the problem more precisely, Following [l], we identify the first and 
second players’ strategies with functions u Cp) and v (p) of the position p = {x, y} 

satisfying constraints (1.2). The strategy U .+ u (p) (V-+ v (p)) generates a bundle 
of motions II bO, U) (n @,,, v)) emanating from the position p. = {q,, y,} at 
t = 0. According to [l] the motion p 1.1 E n (po, u) is determined as a function 

p ItI for which we can find, on every finite interval 0 < t < 6 , a sequence of Euler 

polygonal lines PA(k) [t] = {$,( ) I( [ tj, y*(k) 1 tl } defined by the conditions 

x;(k) [t] = f?/*(k) [t] cos 24 (P,(k) [r!k)]) + 20 (u(‘) it] + 1) / 2 (2.1) 

Y;(k) [t] = I/y,(k) it] sin u (PA(k) [ri’)]) + W (V(‘) [t] --1) / a!! 

dk) < t < z$, 1 P,(k) LoI = PO* To 
(k) = 0 

(i = 1, 2. . .) 

converging uniformly to p [t] on the interval 0 < t < 6 and such that SUpi (~1:: - 

7:‘)) -+ 0 as k -+ 00. We note that A(k) in (2.1) denotes a certain partitioning of the 
semiaxis 0 < t < oo into the intervals zy) < t < T::;, while v(k) I - 1 denotes acer- 

tain measurable function satisfying condition; (1.2). The elements of set n (PO, V) 

are determined analogously. As in [l] we can show that the sets n (po, u) and 11 (pot 
V) are not empty and all their elements p It] = {x L t], y It] } are absolutely conti- 

nuous functions defined for 0 \< t < oo and satisfying the condition y 1 tl > 0. In 

addition, II bo, U)and IT (po, V) have at least one element in common. 

For every motion p [t] we define 8 (p [ . 1) as the smallest number 6 > 0 for which 

p [61 E M. If P Ial E M for all 6 E [O, w), we assume 8 (p [ .]) = 00. Si- 
milarly to [l] the pair of strategies U” and V” form a saddle point for position p. if 

0 (P t-1) < T (PO) < 00 (2.2) 
for every motion p 1.1 E II (PO, V) and 

8 (P i-1) > T (PO) (2.3) 

for every motion p [ - I E II (po, V”). The quantity T (PO) is called the game’s va- 

lue for the position po. If however for a position P* a strategy U* exists such that 
8 (p 1.1) < 00 for every motion p [ . ] 6.g II (p*, U*), then in accord with [llwesay 

that the approach problem is solvable for position p*. If for a position p* we can find a 
strategy V* and some open neighborhood H (M) of set M, such that p ItI e H (M) 

for t E [O, 00) for all p 1. I E II (p*, V*), we say mat the evasion problem issol- 
vable for position p*. Below on the basis of the dynamic programing method we deter- 
mine the capture and evasion sets, i.e. sets of the positions for which the problems of 

approach and evasion, respectively, are solvable ; we also determine the game’s value on 
the capture set. 
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3, In the case being analyzed the fundamental equation of the dynamic programing 
method [4] is 

min max [(1/!/cosu$-w(~+1)/2)T,+ (3.1) 
zrEIO,2~1 VE[-1, 11 

(1/isinu+w(u -1)!2)T,]+i=o 

Here 2’ x and T y, are the partial derivatives in 2 and y of the function T (2, y) . Corn- 

puting the extremal values in (3. l), we obtain 

cos u” = - T, I p, sin u” = - T, / p, p = (TX2 -I- Ty2)“r (3.2) 

v” = sign A, A = T, + T, (3.2) 

Using (3.2) and (3.3), Eq. (3.1) takes the form 

- l’-yp -I- w (A sign A + T, - Ty) / 2 + 1 = 0 (3.4) 

In correspondence with the procedure in [4] the boundary condition for Eq. (3.4) is given 

on an admissible set which we denote hl~ C M and which is defined by the relation 

(see [4], p. 92) 
mln max [I//cosu + w(v+ I)/21 =--v/I+ W<O (3.5) 

uE[O, 2x1 a=[-1, 11 

From (3.5) we obtain 

it/f? = {p = {r, y} 12 = 0, y > w2} (3.6) 

From the meaning of the value of the game we have 

1’ (p) = 0 for p E Mp (3.7) 

The equations for the characteristics for (3.4) are 

IC’ = Jf/yTx / p - w (sign A + 1) I 2, T,” = 0 (3.8) 

y” = r/yT, I p - w (sign A - 1) I 2, TV0 = - p/ (2J4) 

(z” = dz / dq ,c = - t) 

We find T, and T, on set MF from (3.4) and (3.7), which together with the para- 
metric representation of MF yields the initial conditions for Eqs. (3.8) 

2 (0) = 0, y (0) = s, T,(O) == (r/s - w)-l, T, (0) = 0, s > zo2 (3.9) 

Equations (3.8) with initial conditions (3.9) are integrated in [l]. The solution obtained 

is 
x=$++sin&, T,=(@---_w)-1 

The quantity A decreases monotonically on each of the characteristics with parameter 

s , remaining positive up to the instant 7. (s) = nV s/2 at which it vanishes. The 

points on the characteristics, corresponding to this instant, form a parabola Lo whose pa- 

(3.10) 

(3.11) 

rametric equation is 
s+$Qfs, y=+ 

The parabola Lo and the characteristics (3.10) are shown in Fig. 1. 

(3.12) 
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When s > s,, = 4n”w’/(n -/- 2)” every characteristic satisfies the condition x (z, 

s) > 0 for z E [O, ~0 (s)]. When s E (we, so) only a part of each characteristic 
Satisiies the condition x (z, s) > 0. By the problem’s hypothesis the initial position 

Xo, Yo lies in the first quadrant and,therefore, on the basis of the solution of Eq.(3..4j 
we should use only the parts of the characteristics satisfying the condition L > 0 for 
determining the game’s value. 

. . . . . :;. . _.;..._..e_ 
:.. ..s.. . . . 

. 
.:_ 

..- 
. . ..‘.-.:‘*.._ . . - . . _ . . 

. ._ *.. . _. - . . . ..%. . . . . e.: 
u X 

Fig, 1 Fig. 2 

In order to continue the integration of Eqs. (3.8) we set A < 0 in it. As the initial 
conditions for the resulting equations we take the values on characteristics (3.10) and 

(3.11) at the instant T,, (S) that the characteristic (3.10) reaches Lo and we take the 

parameters of parabola L,. As a result we have 

x (To (S)) = ($ + -+) s - F IG Y (To (4) = + 
TX 60 (4) = - T, (TV) = 1 / (dg- w), s E Iso, m> 

(3. 13) 

We use Eq. (3.4) to separate the variables in (3.8). Soving (3.4) for T, and taking into 
account that T, = (v s - UJ)-~, we obtain two values for 1’, 

T 
II 

= w=tQ (Yp S) 
w2-y 9 Q (Y9 4 = [Y( pj2 + 1>1’p (3.14) 

We note that the magnitude of T,, determined by formula (3.14) in which we have cho- 
sen the minus sign, can be extended when y = w2 by continuity by the value T y = 
(1 - uYT ,“)l(h); we assume the satisfaction of this. 

From (3.4), with due regard to A < 0 , we find p = (1 - wT,)J& Using the 
expression for the quantity p and formula (3.14), the Eqs. (3.8) for the character&t& 
can be transformed to the form 

T/ (?/ - ws) 

LX?= (y$_wQ(y, 9,(-6-w, ’ 
yo = + Q b/v 4 (w2 - Y) 

- yfwQ(y, s) 
l3, 15l 
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Here the upper (lower) sign corresponds to the upper (lower) sign in formula (3.14),When 
the minus sign is chosen the right-hand sides of Eqs. (3.15) will again be considered as 
extended by continuity when y = w’. From (3.14) we see that function 0 (y, *a) isde- 
fined only when 

y E IO, w2 + (1/S- 4*1 (3.16) 

Let @’ (s) -be the set on the IC, y-plane, defined by condition (3,16), and let I? (s) be 

its uppefboundary. In order to determine which signs should be chosen in Eqs.(3.15) for 
continuing the integration, we note that when y = s/2 the magnitude of T y (Y, S) must 
coincide with the initial conditions (3.13). From (3.14) we have 

Tll ( ) +,s = 
2w(I/S--)+~)/N-~--22w~ 

(2u;Z - s) (1/i - w) 
(3.17) 

From (3.17) we see that we should choose the plus sign if s E [4w2, 00) and the minus 

sign s E [SO, 4W2) in formula (3.14) and in the Eqs. (3.15) corresponding to it if con- 

T&/2,4 = T, (“0 (4) = (l/c- w)-’ 

is to be satisfied. We note that despite the fact that the magnitude of T,, defined by 

formula (3.14), is independent of the choice of sign in (3.14), we should choose the plus 

sign in Eqs. (3.15) since solutions do not exist for these equations with initial conditions 

(3.13) when the minus sign is chosen in them. 

Using Eqs. (3.15) we can construct a family of characteristics for S E (SO, oo). An 
exemplary form of characteristics (3.8) with initial conditions (3.13) is shown in Fig, 2. 
When s CZ [4w2, oo) the characteristics, being solutions of Eqs. (3.15) in which the plus 
sign has been chosen,“drop downward” during the time ‘G . When s E is,,, 4w2) the 

characteristics, being solutions of Eqs. (3.15) in which now the minus sign has been cho- 
sen,“rise upward” during the time 7 up to the instant ‘Ci (S) at which they reach the 

upper boundary I’ (s) of region w (s), smoothly tangent to it. The instant rr (8) is de- 

termined from the condition 
y (ai (s), s) = we + (1/F- w)’ (3.18) 

The ends of the characteristics, corresponding to the instant ri (s), form the smooth 

curve L, shown in Fig. 2. The solution of Eqs. (3.15) with the minus sign chosen in them 
cannot be continued for 7 E (xi (s), oo) However, for constructing the characteristics 
when Z CZ (rr, (s), 00) we can use Eqs. (3.15) having again chosen the plus signin 

them and having selected suitable initial conditions for these equations on curve L, so as 

to preserve the continuity of the functions 5 (r, s), y (r, s), 1’, (7, s) and T, (z, s). 
It turns out that all the characteristics constructed thus approximate the straight line 

y = w2 for an unboundedly long time. 
The family of characteristics constructed does not completely fill the region Y > W2 

as is erroneously assumed in [4]. At the same time it is easy to see from Eqs. (1.1) that 
the approach problem is solvable for any point of the region y > w2 . To effect the 
approach it is sufficient for the first player to use, for instance, the strategy U* defined 
by the function u* @): u* (p) = n/2 when y > 4w2 and u* (p) = 3n/4 when 
y < 4~2 Meanwhile, the function T (2, Y) = ‘G (z, y), resulting from solving the 
characteristiciequations x z 5 (r, s) and y = y (r, s) with respect to z and s is 
not defined in the whole region y > w2 and, consequently, by the rules of dynamic pro- 
graming, cannot be used for determining the optimal strategies in the region y > w2. 
In [4] it is noted that the presence of such a situation in a differential game often indi- 
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cates the existence of singular solutions, viz., of universal paths.However,a direct check 
of conditions (7.13.2) of [4] shows that such universal curves do not exist in the present 
game, and, consequently, the procedures for the further integration of Eq. (3.4), developed 

in [4] in the presence of universal curves,is inapplicable here. In order to continue the integra- 
tion of Eq. (3.4) we consider certain auxiliary heuristic arguments by means of which we 

obtain additional boundary conditions for Eq. (3.4). These conditions enable us to con- 

clude the integration of Eq. (3.4) and to use the function II’ (x, y) resulting from such 
an integration to construct the strategies U” and V. 

4. In the auxiliary conditions we shall assume that the number 0 (p [ * I)’ in condi- 
tions (2.2) and (2.3) is not determined by the first instant 6 at which the inclusion 

p [Sl E fif is accomplished but is given by the relation 

0 (p [ -1) = inf (19 > 0 1 x Ml -c 0) (4.1) 

and so determines the first instant that the motion p[ + 1 “penetrates” set M. We note 
that the condition for motions to attain the target set M, treated as a “penetration”,was 

examined in [4]. We assume further that the function T (J, y) = ‘G (z, p),, obtained 

by solving the characteristics’ equations x = LC (‘6, s) and y = y (a, s) with respect 

to ‘t and s, is the game’s value. From formulas (3.8),(3.10) and (3.11) we see that the 

quantity A = I’, + II’, is positive in the region located above parabola L, and is 
negative in the region below L, and already filled up with characteristics (see Fig. 1). 

Since A” = - p / (:!Vx < 0, the magnitude of A decreases along each character- 

istic. But then it is natural to expect that the inequality A < 0 is retained in the 

whole region lying below L,, in which the game’s value exists. let N 0 denote the point 

with coordinates {0, s,, / 2}, being the point of intersection of L, with the ordinate axis, 
and let M, be the part of target set fif, determined by the condition 

MO = {p = (5, y> 1 2 = 0, y E [O, so / 21) (4.2) 

Further,suppose that strategies U” and V’ satisfying conditions (2.2) and (2.3), wherein 
the quantity 8 (p I - 1) is defined by (4. l), exist for an initial position po= {xc, y,,} E 
.&lo ; these strategies are determined by formulas (3.2) and (3.3) in the function T (2, 
y) in the region wherein the game’s value exists. Then for all t for which y ItI < 
so / 2 the condition p itI E M, is satisfied for every motion 

p I-1 = {d*l, 5 [*I> ErI (PO, w n rI (PO? J? 
As a matter of fact the motion p [tl cannot fall into the region I < 0 because this 

would contradict the optimality of the second player’s actions, who has the possibility 
of not admitting of intersections with set M. by the motions p [.I E II (pn, V) when 
y ItI Q so / 2. On the other hand, from the fact that A < 0 in the region below parabola 

L, and from relation (3.3) it follows that u” (p) = --1, (V” + u (P)), if point P lies 

below L,. From Eqs. (1. l), in its own turn, we see that if the motion p 1. J E I1 (po, 
0”) (1 IX (p,,, Vu) falls into the region z > 0 and is then forced to move in this region 
in the negative direction of the ordinate axis, it does not reach the target set M, this 
contradicts the optimality of the first player’s efforts. 

By virtue of the condition p [t] = {LX [tl, y it]} E M0 for y [tl -< so/2 everymo- 
tion p f.1 E n (pe, v) f-1 n (PO, p) satisfies the conditions 

Lx’ [tl = 0, y’ [tl E [-- I/a y ItI - w, v2y [t] + WI (4.3) 
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for all 1 for which Y [t] .< s&!. It is natural to assume that the motions I, 1. I E I I 
(po, [I”), generated by strategy U” among all solutions of (4.3), are characterized , 
firstly, by y’ [t] > 0 when y [tl < s(, / f! and, secondly, by the motions p [ .] rea- 

ching the point N, E ~11,~ in minimal time as compared with all solutions p I.1 of 

the inclusion in (4.3). But this signifies that the motions p [ . ] generated by strategies 
c1” and b” satisfy the equation 

5’ = 0, y' z: v 2y - ?/?, 2 IO] == 0, y [O] :-: y0 (4.4) 

From (4.4) we see that when Yo > W2 / 2 the motion of point p z= {x, y}, described 
by Eqs. (4.4), takes place in the positive direction of the y-axis, while when y. < w” I 
2 , in the negative direction. The point Y, = w’ / 2 corresponds to the equilibrium 

position for Eqs. (4.4). Below we ascertain that through this point on the ordinate axis 
there passes a barrier, i.e. a curve separating the regions wherein the approach and the 

evasion problems are solvable. Integrating the second of Eqs. (4.4) from Y to so /2, we 
find the time of motion from the point p = (0, Y} to No 

(4.5) 

S - 4n2w2 / (n + 2)2, 0- y E (w” / 2, so / 21 

It is natural to expect that after reaching point No the point p moves up to set M1; 
along a characteristic with parameter s o, so that the total time of motion equals 

w (y) ZZ 00 (y) + r?w / (n + 2) (4.6) 

6, Using function o (Y) as a boundary condition for Eq. (3.4), we continue the fop 
ma1 integration of this equation by the method of characteristics. The heuristic argu- 
ments presented in Sect. 4, will not be used later. 

In accord with the procedures in [4] the initial conditions for Eq. (3.8) are determined 

by the function o (Y) and by Eq. (3.4) in the following way: 

T, (T* (s)) = - T, (Q (s)) = (1/s--- w)-’ (5.1) 
5 (z* (s)) = 0, y (z* (s)) = s / 2, T* (8) = 0 (s / 2) (5.2) 

When integrating (3.8) with initial conditions (5.1) and (5.2) we should take advantage 
of Eqs. (3.15) by suitably choosing the plus and minus signs in these equations just as we 
did above. The characteristics obtained by a similar integration are shown in Fig. 3. It 
turns out that as s + w2 the characteristics converge to a certain curve B, whoseequa- 

tion, obtainable from (3.15), is 

5 (Y) = - LY (W” - Y)]“’ - W2 arcsin -$ + ~2 (f _ $) (5.3) 

Y CZ [w2/2, w21 

By B we denote a smooth curve obtained by pasting the curve B, together with the part 
of the straight line y = w2 lying in the region x > w2 / (n/4 -I- 1/2), while by Dp 
and DE we denote the regions into which the curve B divides the first quadrant, as shown 
in Fig. 3. Using Eqs. (3.10) and (3.15) we can verify that the family of characteristics 
constructed uniquely covers region Dp when & (w2, m) . Since Y (‘6, s) and x (z, S) 
are continuous in ‘t and s when r > (J and s > w‘, the function T (z, y) = ‘G (x, y) 
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obtained by solving the characteristics’ equations relative to ‘G is continuously differen- 
tiable in Dp. In addition, the function obtained is a solution of Eq. (3.1) in DP and sa- 
tisfies the boundary conditions (3. ‘7) and 

T (0, y) = w (y) for y E (w” / 2, s,, / 2)1 (5.4) 

We note as well that T (p) -00 as p+p*ES B,~E Dp.Thefunction T (x, y) 
constructed can be used to solve the approach-evasion problems and to construct the stra- 

tegies u” and V”. 
Let us turn at first to the evasion problem. 

Using Eq, (8.3.1) in [4] we can show that for 
Eqs. (1.1) there exists a family of curves called 
semipermeable in [4] and described by theequa- 
tion 

J: (y, c) = - [y (20” - y)j% - (5.5) 

l/Y ws arcsin 7 + c 

y E [ws / 2, w21, c E (- do, c=) 

The semipermeable curves (5.5) are shown in 
Fig. 4. 

Curves (5.5) possess the following property, 
called the se~permeabi~~ property in [4]. 
By Gi, (co’) and Gz (co) we denote regions into 
which a curve (5.5) with parameter c, divides 
the strip (5.6) 

0 z 
G = {P = {xc, z/)1 YE [w2/2, ~21) 

4 Fig. 3 as shown in Fig. 4. Then, if PO E G2 (co), the 
strategy V* + u* (p), (o* (p) = - 1) en- 

sures the preservation of all motions p 1. I = {x i .I, y [. 1) E II (p,, V*) in the 
setf G(2kJ for all t for which 3 it1 E 1~’ / 2, w”l. Usmg +he Stated property of 
curves of family (5.5), we can show that the evasion problem is solvable on the set 
DEUB*,whereD*=B\B,. 

By 1 (po) we denote the abscissa ofthe point of intersection of a curve of family (5.5) 
passing through the point p. E D, U B* with the straight line Y = ~9 I 2 , and we in- 
troduce the strategy vPO defined by the function 

0% (P) = up0 6% Y) = sign (r (PO) - 5) (5.7) 

Let E (po) be a closed set bounded by a curve of family (5.5) passing through point PO , 
and by the straight lines y = w2, 5 = 9 bo) and Y = 0, as shown in Fig. 4. Then, on the 
basis of the semipermeability property of curves (5.5) we can show that every motion 
P i-1 E II (po, vPo) is preserved on set E (p,J up to the first instant of hitting onto the 
closed set 

E, (PO) = {P = {I, Y> I x > rl.&,)t Y E [O, ~2 / 21) 

At the same time, turning to (5.7), we can verify that strategy V_ ensures the satisfac- 
tioii of the condition P ftl s E, (po), t E it*, co) for all motions p l- I = II (PO, vp$ 

for which p [tJ GE E* (po). But then for every motion p I. 1 E 33 (PO, UP,) this same 
strategy ensures the fuliXlment of the inclusion p [t] f E (po), t E IO, 00) whichjointly 
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with the condition E (p,J 0 M ntpo)‘* = &: implies that strategy VP, enables all the 
motions it generates from position 11~ to evade the q (p,,) / 2 neighborhood of set X. 

We now consider the approach problem. By N, we denote the point with coordinates 

{w” / (x I4 -k ‘i,), w’} at which the curves B, and B* are pasted together and by 
Dg’ we denote the closed set bounded by curve B and by the characteristic with para- 
meter sO = 4~?w~/(n + 2)2, as shown in Fig, 4. Let 0;’ m= Dp \ D{J”). We speci- 
fy the strategies u” and T/O by the functions UO (p) and ZI’ (p) defined by (3.2) and(3.3) 

when p E: DIl and continued in an arbitrary manner when p g DP. For example,we 
can set U” (p) --I n - W2 arcsin fi/w and 2;’ (p) :: - 1 when p-{s, r~} @ Dp. 
The approach problem proves to be solvable on the set DP U (B, \, N,) ; in theopen 
set D(pl’ the ame’s value coincides with the function T (5, y), obtained by the formal g 
integration of Eq. (3.4), while the strategies u” and V“ introduced above comply with 
conditions (2.2) and (2.3) and yield, therefore, a saddle point for the differential game 

(1.1) - (1.3). Figure 4 depicts the form of motions p [. I E KI (p,,, (Jo) n n (p,,, V”) 
when pO E D(,?. 

/ 
/ 

/ 
/ 

/ 

,q 

flF 

v X 

Fig. 4 Fig. 5 

The structure of the differential game (1.1) - (1.3) turns out to be somewhat different 
on the set DE’ IJ (B, \ N,) . Namely, if p. E Dg’ \ B the strategy U” guaran- 
tees the fulfillment of the relation 8 (p [ -1) < T (po) for all motions p 1. I E II 
(pot li”) . At the same time, a strategy V guaranteeing the satisfaction of condition 

(2.3) for all motions generated by this strategy does not exist. However, for every E> 0 
we can find a strategy V, -+ V~ (p) guaranteeing the fulfillment of the relation 

0 (P [*I) > T (PO) - E 
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for all motions p [. I E II (po, V,). For example, we can define the function v, (p) 
as follows: 

% (p) = - 1 for x< 6, v, (p) = v” (p) for z > 6 (5.8) 

where 6 ~= 6 (E) is a sufficiently small positive number and V” (p) is the function de- 

termining strategy V”. Thus, if p,, E D$‘, p. @ B an optimal strategy U” exists 
for the first player and only ac E -optimal strategy for the second (cf. [l], p, 83) . Figure 

5 shows the form of the e-optimal motions p 1. ] E II (pot U”) n II (p,,, V,). 
Inthec=e P~EB,, po#N,, the strategy v defined above solves the approach 

problem for the position pa; however, the set of instants of first contact of motions 

p [-IE U(P,, in with set A! turns out to be unbounded in this case, which, as noted 

in [6], can lead to complications. In the given case this becomes apparent in that although 

the approach problem is solvable for the position p. = {x0, ycj (all motions p [. ] E 
n (PO7 U”) n l-I (PO, VO) reach set 1M in time w In (w” / (2w2 - go)) ), never- 
theless, for every number h a strategy VI, f vh exists guaranteeing the satisfaction of 

8 (p 1.1) > h f or every motion p [ .] E Is (p,,, V,) . The function 2~6 (p) deter- 

mining strategy V, can be defined, for instance, by formulas (5.8) when p E DP, and 

6 = 6 (h) > 0 should be chosen sufficiently small, and by the relation 

uh (p) = vh (x, y) = sign (y + x - w2 / 2) (5.9) 

when p @ Dp. By virtue of this the above-described situation of e-equilibrium, hold- 

ing for the positions p. E DpCz) \ B. , vanishes for the positions p,, E B,, p,, #N*, 
Figure 5 shows the form of the motions p [ - ] E n (pot r) fl n (p,,, vh). 

Finally,in the case p. = N, , for every second player’s strategy and for every open 

neighborhood H (M) of set M we can find a motion p [. ] E II (N,, V) falling in- 

to H (M) for some 6 > 0, so that the evasion problem proves to be unsolvable for the 
position N,. At the same time, for every strategy U there exists a motion p [ - 1 E II 
(N,, U) satisfying the condition p It] G M for all-t E [O, co), so that the approach 
problem is also unsolvable for the position N, . The difficulty mentioned can be suc- 

cessfully overcome if in the evasion problem the condition that every motion evades 
some neighborhood H (hi) of set M is replaced by the condition that every motion 

evades the set M itself. In this case the evasion problem is solvable for position N* 
and the strategy solving the evasion problem indicated can be determined by function 

(5.14) (sic j. 

The fundamental assertion made can be proved by estimating the magnitude of theva- 
riation of function T (p) on the motions p [tl of system (1. 11, similarly as in [I, 71, 

with due regard to: (1) function I’ (p) is continuously differentiable in region Dp and 

jointly with the functions U” (p) and V” (p) satisfies Eq. (3.1) in region Dp; (2) T(p)> 
0 when p I$ M and T (p) = 0 when p E MF; (3) p It] E Dp for every motion 

p[*]En(Po, u”),p,ED p, in every interval [O, 61 on which p it] @ Ad; (4) 
the evasion problem is solvable in region DE. 

The author thanks A. A. Bogoiavlenskii for posing the problem and for attention to the 
work. 
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The problem of optimal response [l, 21 with nonsmooth (generally speaking, 

nonfunctional) constraints imposed on the state variables is considered. This 
problem is used to illustrate the method of proving the necessary conditionsof 

optimality in the problems of optimal control with phase constraints, based on 

constructive approximation of the initial problem with constraints by a sequence 

of problems of optimal control with constraint-free state variables. The varia- 

tional analysis of the approximating problems is carried out by means of a pure- 
ly algebraic method involving the formulas for the incremental growth of a func- 

tional [3, 41 and the theorems of separability of convex sets is not used. 
Using a passage to the limit, the convergence of the approximating problems 

to the initial problem with constraints is proved, and for general assumptions 
the necessary conditions of optimality resembling the Pontriagin maximumprin- 

ciple [l] are derived for the generalized solutions of the initial problem. The 
conditions of transversality are expressed, in the case of nonsmooth (nonfunc- 
tional) constraints by a novel concept of a cone conjugate to an arbitrary closed 
set of a finite-dimensional space. The concept generalizes the usual notions 
of the normal and the normal cone for the cases of smooth and convex mani- 

folds. 

1. Statement of tho problom. We consider a general problem of the time 

optimal response for systems of ordinary differential equations in the class of measurable 
controls u (t) and absolutely continuous trajectories z (t), ts < t < t, 

5’ = f (X, u, t), X = (Xl, . . ., Xn)’ E Rn ( 1.1) 


